(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxRelTRS could be proven to be
BOUNDS(1, n^3).
The TRS R consists of the following rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +(S(0), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0
bubble(x, Nil) → Cons(x, Nil)
bsort(0, xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
The (relative) TRS S consists of the following rules:
+(x, S(0)) → S(x)
+(S(0), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Rewrite Strategy: INNERMOST
(1) RelTrsToTrsProof (UPPER BOUND(ID) transformation)
transformed relative TRS to TRS
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^3).
The TRS R consists of the following rules:
bsort(S(x'), Cons(x, xs)) → bsort(x', bubble(x, xs))
len(Cons(x, xs)) → +(S(0), len(xs))
bubble(x', Cons(x, xs)) → bubble[Ite][False][Ite](<(x', x), x', Cons(x, xs))
len(Nil) → 0
bubble(x, Nil) → Cons(x, Nil)
bsort(0, xs) → xs
bubblesort(xs) → bsort(len(xs), xs)
+(x, S(0)) → S(x)
+(S(0), y) → S(y)
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
bubble[Ite][False][Ite](False, x', Cons(x, xs)) → Cons(x, bubble(x', xs))
bubble[Ite][False][Ite](True, x', Cons(x, xs)) → Cons(x', bubble(x, xs))
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BSORT(0, z0) → c1
LEN(Cons(z0, z1)) → c2(+'(S(0), len(z1)), LEN(z1))
LEN(Nil) → c3
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLE(z0, Nil) → c5
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
+'(z0, S(0)) → c7
+'(S(0), z0) → c8
<'(S(z0), S(z1)) → c9(<'(z0, z1))
<'(0, S(z0)) → c10
<'(z0, 0) → c11
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BSORT(0, z0) → c1
LEN(Cons(z0, z1)) → c2(+'(S(0), len(z1)), LEN(z1))
LEN(Nil) → c3
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLE(z0, Nil) → c5
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
+'(z0, S(0)) → c7
+'(S(0), z0) → c8
<'(S(z0), S(z1)) → c9(<'(z0, z1))
<'(0, S(z0)) → c10
<'(z0, 0) → c11
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
K tuples:none
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, LEN, BUBBLE, BUBBLESORT, +', <', BUBBLE[ITE][FALSE][ITE]
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing nodes:
+'(S(0), z0) → c8
LEN(Nil) → c3
<'(0, S(z0)) → c10
<'(z0, 0) → c11
+'(z0, S(0)) → c7
BSORT(0, z0) → c1
BUBBLE(z0, Nil) → c5
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(+'(S(0), len(z1)), LEN(z1))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(+'(S(0), len(z1)), LEN(z1))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
K tuples:none
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, LEN, BUBBLE, BUBBLESORT, <', BUBBLE[ITE][FALSE][ITE]
Compound Symbols:
c, c2, c4, c6, c9, c12, c13
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLESORT(z0) → c6(BSORT(len(z0), z0), LEN(z0))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
K tuples:none
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, BUBBLE, BUBBLESORT, <', BUBBLE[ITE][FALSE][ITE], LEN
Compound Symbols:
c, c4, c6, c9, c12, c13, c2
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
BUBBLESORT(z0) → c1(LEN(z0))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
BUBBLESORT(z0) → c1(LEN(z0))
K tuples:none
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(11) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
BUBBLESORT(z0) → c1(LEN(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
K tuples:none
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(13) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubblesort(z0) → bsort(len(z0), z0)
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
Defined Rule Symbols:
bsort, len, bubble, bubblesort, +, <, bubble[Ite][False][Ite]
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(15) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
bsort(S(z0), Cons(z1, z2)) → bsort(z0, bubble(z1, z2))
bsort(0, z0) → z0
bubblesort(z0) → bsort(len(z0), z0)
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LEN(Cons(z0, z1)) → c2(LEN(z1))
We considered the (Usable) Rules:none
And the Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+(x1, x2)) = 0
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(BSORT(x1, x2)) = 0
POL(BUBBLE(x1, x2)) = 0
POL(BUBBLESORT(x1)) = 0
POL(BUBBLE[ITE][FALSE][ITE](x1, x2, x3)) = 0
POL(Cons(x1, x2)) = [1] + x2
POL(False) = 0
POL(LEN(x1)) = x1
POL(Nil) = 0
POL(S(x1)) = 0
POL(True) = 0
POL(bubble(x1, x2)) = 0
POL(bubble[Ite][False][Ite](x1, x2, x3)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(len(x1)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
LEN(Cons(z0, z1)) → c2(LEN(z1))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
We considered the (Usable) Rules:
len(Nil) → 0
len(Cons(z0, z1)) → +(S(0), len(z1))
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
And the Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(BSORT(x1, x2)) = [1] + x1
POL(BUBBLE(x1, x2)) = 0
POL(BUBBLESORT(x1)) = [1] + x1
POL(BUBBLE[ITE][FALSE][ITE](x1, x2, x3)) = 0
POL(Cons(x1, x2)) = [1] + x2
POL(False) = 0
POL(LEN(x1)) = 0
POL(Nil) = 0
POL(S(x1)) = [1] + x1
POL(True) = 0
POL(bubble(x1, x2)) = 0
POL(bubble[Ite][False][Ite](x1, x2, x3)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(len(x1)) = x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
We considered the (Usable) Rules:
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
len(Nil) → 0
bubble(z0, Nil) → Cons(z0, Nil)
len(Cons(z0, z1)) → +(S(0), len(z1))
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
And the Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = 0
POL(BSORT(x1, x2)) = [1] + x1·x2
POL(BUBBLE(x1, x2)) = [2] + x2
POL(BUBBLESORT(x1)) = [2] + [2]x1 + [2]x12
POL(BUBBLE[ITE][FALSE][ITE](x1, x2, x3)) = [1] + x3
POL(Cons(x1, x2)) = [1] + x2
POL(False) = 0
POL(LEN(x1)) = 0
POL(Nil) = 0
POL(S(x1)) = [2] + x1
POL(True) = 0
POL(bubble(x1, x2)) = [1] + x2
POL(bubble[Ite][False][Ite](x1, x2, x3)) = [1] + x3
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(len(x1)) = [2]x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(23) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:
<'(S(z0), S(z1)) → c9(<'(z0, z1))
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
<'(S(z0), S(z1)) → c9(<'(z0, z1))
We considered the (Usable) Rules:
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
len(Nil) → 0
bubble(z0, Nil) → Cons(z0, Nil)
len(Cons(z0, z1)) → +(S(0), len(z1))
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
And the Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+(x1, x2)) = [1] + x1·x2
POL(0) = 0
POL(<(x1, x2)) = 0
POL(<'(x1, x2)) = x2
POL(BSORT(x1, x2)) = x1·x22
POL(BUBBLE(x1, x2)) = [1] + x2 + x22
POL(BUBBLESORT(x1)) = x1 + x12 + x13
POL(BUBBLE[ITE][FALSE][ITE](x1, x2, x3)) = x32
POL(Cons(x1, x2)) = [1] + x1 + x2
POL(False) = 0
POL(LEN(x1)) = 0
POL(Nil) = 0
POL(S(x1)) = [1] + x1
POL(True) = 0
POL(bubble(x1, x2)) = [1] + x1 + x2
POL(bubble[Ite][False][Ite](x1, x2, x3)) = [1] + x2 + x3
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(len(x1)) = [1] + x1
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
bubble(z0, Cons(z1, z2)) → bubble[Ite][False][Ite](<(z0, z1), z0, Cons(z1, z2))
bubble(z0, Nil) → Cons(z0, Nil)
bubble[Ite][False][Ite](False, z0, Cons(z1, z2)) → Cons(z1, bubble(z0, z2))
bubble[Ite][False][Ite](True, z0, Cons(z1, z2)) → Cons(z0, bubble(z1, z2))
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
len(Cons(z0, z1)) → +(S(0), len(z1))
len(Nil) → 0
+(z0, S(0)) → S(z0)
+(S(0), z0) → S(z0)
Tuples:
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
S tuples:none
K tuples:
BUBBLESORT(z0) → c1(BSORT(len(z0), z0))
LEN(Cons(z0, z1)) → c2(LEN(z1))
BSORT(S(z0), Cons(z1, z2)) → c(BSORT(z0, bubble(z1, z2)), BUBBLE(z1, z2))
BUBBLE(z0, Cons(z1, z2)) → c4(BUBBLE[ITE][FALSE][ITE](<(z0, z1), z0, Cons(z1, z2)), <'(z0, z1))
BUBBLE[ITE][FALSE][ITE](False, z0, Cons(z1, z2)) → c12(BUBBLE(z0, z2))
BUBBLE[ITE][FALSE][ITE](True, z0, Cons(z1, z2)) → c13(BUBBLE(z1, z2))
<'(S(z0), S(z1)) → c9(<'(z0, z1))
Defined Rule Symbols:
bubble, bubble[Ite][False][Ite], <, len, +
Defined Pair Symbols:
BSORT, BUBBLE, <', BUBBLE[ITE][FALSE][ITE], LEN, BUBBLESORT
Compound Symbols:
c, c4, c9, c12, c13, c2, c1
(27) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(28) BOUNDS(1, 1)